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' L  TOWARD A GENERAL THEORY OF ELASTIC EQUILIBRIUM EQUATIONS 
FOR AN ISOTROPIC BODY 

Orazio Tedone (Genoa) 

ABSTRACT.Elastic equi l ibr ium problems are formulated 
and solved i n  t h e  form of d e f i n i t e  i n t e g r a l s  wherever pos- 
s i b l e .  No mass f o r c e s  are assumed. Problems i n  which t h e  
boundary f o r c e s  and boundary displacements are s p e c i f i e d , a s  
w e l l  as t h e  gene ra l  mixed boundary cond i t ion  problems,are 
t r e a t e d .  
boundaries.  
f e r e n t i a l  equat ions .  

I n f i n i t e  p lanes  and spheres  are considered as 
The problems reduce t o  o rd ina ry  o r  p a r t i a l  d i f -  

INTRODUCTION 

The methods of a gene ra l  n a t u r e ,  which have previous ly  been used t o  s o l v e  /129* 
problems of e las t ic  equi l ibr ium f o r  an i s o t r o p i c  body may be  reduced substan- 
t i a l l y  t o  two -- Lam6's classical method f o r  series expansions of simple func- 
tions and t h a t  f o r  d e f i n i t e  i n t e g r a l s ,  commonly c a l l e d  t h e  Be t t i -Cer ru t i  method. 
The f i r s t ,  which w a s  r e a l l y  c rea t ed  and success fu l ly  employed t o  so lve  many 
o t h e r  problems i n  mechanics and mathematical  phys ics ,  cannot be  appl ied  beyond 
a very  r e s t r i c t e d  number of cases as f a r  as ou r  problem i s  concerned. I n  addi- 
t i o n ,  i t  i s  complicated by t h e  no t  e a s i l y  surmountable d i f f i c u l t y  of determining 
t h e  cons t an t s  when w e  s a t i s f y  t h e  su r face  condi t ions .  
indeed an appearance of g r e a t  g e n e r a l i t y ,  b u t  -- perhaps p r e c i s e l y  because of 
th is  g r e a t  g e n e r a l i t y  -- it  has  a l l  t h e  c h a r a c t e r i s t i c s  of an  a b s t r a c t  method, 
showing i t s e l f  t o  be l i t t l e  adapted t o ,  o r  f l e x i b l e  i n ,  t h e  r e l a t i v e l y  s imple 
problems of  t h e  equi l ibr ium of i s o t r o p i c  bodies .  
been obta ined  by i t s  use ,  i t  is my opinion t h a t  t h e s e  r e s u l t s  are t o  be a t t r i b u -  
t e d  more t o  the s tudy  and thought which t h e  eminent p r a c t i t i o n e r s  of t h e  sc i ence  
-- who wanted t o  g ive  t h i s  method l i f e  -- have p u t  i n t o  i t ,  r a t h e r  than t o  t h e  
i n t r i n s i c  va lue  of t h e  method. 

The second method has  

Although n o t a b l e  r e s u l t s  have 

I turned  these  cons ide ra t ions  over i n  my mind many t i m e s  when I had t o  /130 
de lve  i n t o  t h e  s u b j e c t  f o r  another  purpose. 
gene ra l  p r i n c i p l e s  which seem t o  me more s u i t a b l e  than those  h e r e t o f o r e  
i n  u s e  t o  o b t a i n ,  o r  a t  least  t o  a t tempt ,  a s o l u t i o n  of e l a s t i c  equi l ibr ium 
problems f o r  i s o t r o p i c  bodies .  Exposi t ion of t hese  p r i n c i p l e s  and a p p l i c a t i o n  
of them t o  v a r i o u s  s p e c i a l  problems w i l l  be  the  s u b j e c t  of t h i s  r e p o r t ,  and of 
any o t h e r  which may fo l low it .  

From my study I was a b l e  t o  d e r i v e  

I hope t h a t  when I have demonstrated t h e  f a c t  t h a t  a l l  t h e  problems whose 
s o l u t i o n  i s  known may be solved by a uniform method, simply, and even perhaps,  
e l e g a n t l y ,  and t h e  f a c t  t h a t  another  l a rge  class of problems i s  a l s o  s u s c e p t i b l e  
of r e l a t i v e l y  simple s o l u t i o n ,  my views and my work w i l l  be  judged wi th  a 
c e r t a i n  indulgence.  

A s  f a r  as i s  p o s s i b l e  f o r  m e  t o  do so ,  I w i l l  p r e sen t  t h e  s o l u t i o n s  of t he  

* Numbers i n  the margin i n d i c a t e  paginat ion i n  t h e  o r i g i n a l  fo re ign  t e x t .  



separate problems in the form of definite integrals, since these solutions 
have the advantage--over those presented in the form of series expansions--that 
they include all the elements of the problem in an artificial way: 
and results. Besides, methods of verification are often quick and simple. We 
may also obtain analytical expressions in series form from the analytical ex- 
pressions for the definite integrals, whereas the inverse problem is not so 
simple. 

initial data 

In this Report, I will deal with problems in which the surface of the 
elastic body is a plane or a sphere. / 

I. Equations and General Principles 

1. Let us immediately decide to call x, y, z the coordinates of any point 
in space and--every time that an attempt is made to represent a definite 
integral function--to call 5, n ,  5 the points of the variable point on the 
surface, or in the portion of the space over which integration is extended. 
Let us also agree always to indicate by S the portion of space which is occu- 
pied by the elastic body which is finite, or infinite, and connected,and by 
a its external surface, which we will assume in every case to satisfy the 
conditions under which Green’s theorem may be applied in space S. 

In order not to introduce useless complications, we will always assume 
Then the in- that the elastic body is not subject to external mass forces. 

definite equations of elastic equilibrium of a homogeneous and isotropic body 
may be given in either of the two following forms 1131 

I ‘ I  \ :  

i 

in which X and p are Lame’s two known constants, which, as is known, are sub- 
ject to conditions 

3 ~ + 2 ~ > 0 ,  p > ~ .  
(3)  

The components X Z of the stress acting over one surface element of 

the elastic body located in the position of normal n are given by the following 
formulas 

n’ n 

X , = A e c o s n z + 2 p  
( 4 )  
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Y,= A 6 cosn y 4- 2 p  

2, = 1 8 ~ 0 s  n z + 2 p  

-- - a a a a  
d n  ax a Y  a Z  I 

cos nz - os 
cosn x - o, cosnp 

cos?ax + - cos ny + - cosnz.  

( 4 )  

If, for purposes of brevity, we indicate by L, M y  N, the values assumed by 
-Xn, - Yn, -Zn in the points of u,  when normal n to u is understood to be 
directed to the interior of S, the most general problem, which we wish to treat 
here, may be stated thus: 
regular and sa t i s f y  expression (1) or expression ( 2 )  i n  S ,  such that  three of 
the expressions u,  v,  w; L, M, N,--of which only two, say, u and L,  corresponding 

Let us f ind  a system of functions u, v ,  w which are 

i t o  the same coordinate axis--assume assigned values i n  points of u .  

2 .  To solve these problems let us begin by establishing certain funda- 1132 
mental formulas. Therefore, let us indicate by G the ordinary Green function 
relative to space S and to point (x, y, z) inside S, which, as is known, when 
considered as a function of the coordinates of the variable point ( 6 ,  q ,  5) or 
of the coordinates (x, y, z )  of the pole, is regular and harmonic* in S, except 
when S=x, q=y, <=z,  in which case it becomes infinite in the manner of 

and vanishes in the points of u.  
Green function which within S satisfies the same conditions .as G, while on u 
the normal derivative dG1 

dn 
case in which S extends to infinity. 
at infinity in the manner of potential functions. 
conditions, functions G and GI exist and are uniquely determined in the most 

general cases, 

Let us similarly indicate by GI the other 

assumes a constant value** which is zero only in the 

In this last case, G and G1 become zero 
It is known that under these 

If we then find that -- when 8 is a harmonic function in S -- the first 

* To speak more Precisely let us say that by harmonic function we mean any 
function whose second-order differential parameter is generally zero, and 
by harmonic and regular function we mean any function that, besides being 
harmonic, is uniform, finite, and continuous, together with the first-order 
derivatives in that region of space in which we consider it. 
If we want to construct function G1 effectively, it is perhaps more conve- 
nient to start from Klein’s definition, by which G1 has in S two poles of 
first order at the points (x,  y, 21 ,  (XQ, YO, 20) instead of one, with the 
residues +1 and -1, and such that dG1 

dn 

** 

become zero over u .  
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equation (1) may be written as 

by applying Green's theorem to the functions G and u + - x8 in S ,  it is 
2)1 

found, assuming that u and 8 are regular in S, that 

a formula which may also be written 

Similarly,under the same conditions for u and 8 ,  application of Green's 
A + u  

2u theorem in S to the functiorsG1 and us-- xe gives the following 

a formula which may also be written 

Similar considerations also hold true, of course, for the other two 
equations (1). 

Here we should like again to observe that, if S extends to infinity, the 
constants which appear in the second terms of expressions (6) or (6') are zero. 
However, in this case we will assume for the applicability of Green's theorem 

x 8 and those like it become zero at infinity with A + l J  that function u + - 
2v 

order higher than 1. 
r 

3 .  If the attempt is now made to solve the problem of elastic equilibrium 
when the values of displacements u, v, w on the surface (5 are given, we may 
observe that, because of expression (5) and similar ones, we can write 

4 



and that in these formulas the first terms on the right side are known. 
problem is then reduced to determining function 8, harmonic and regular in S, 
so that the equation 

The 

a U  a v  a w  e - + - + __, 
ax a y  aZ  , 

or 1 1 3 4  

will be identically satisfied. 

It may be noted that, based on the hypothesis made regarding 8, the right 
and left sides in equation (7) are two harmonic functions; equation (7) will 
thus be identically satisfied in S if it is identically satisfied in all the 
points of surface u. The problem which has been formulated may therefore be 
reduced to determining the values which 0 must assume in the points of u by 
means of the equation to which equation (7) is reduced in the points of u .  
Harmonic function 8 will be constructed with these values. 

If instead an attempt is made to solve the elastic equilibrium problem when 
the values for L ,  M, N are given on u ,  we will note that for expressions ( 4 )  we 
may write 

I x I L - - e COS 18 x - W, COS ia y + W, COS tt 2, 
1 - ---_ - d u  

i i U  2 P  2 
. . . . . . . . . . . . . . . . I . .  

and that therefore for expression ( 6 )  and similar ones the following equations 
may be written: 

5 
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I . 
- .- 

I I135 in which the first terms on the left sides are known. In this case, the 
problem is reduced to determining the four functions 8, - 
and regular in S ,  and the fact that there they identically satisfy the four 
equations 

- 
w2 , W3 , harmonic w 1  , 

We will not develop these equations, but we will not fail to observe that 
remarks may be made about them similar to those which we have made about 
expression (7) .  

If, finally, the attempt is then made to solve the problem of elastic 
equilibrium in the case in which several of the u, v, w; L, M y  N values are I 

I 

given with the indicated restriction, expressions (5) and (8) will be of timely 
use to us, and the rest of the solution will proceed as in the preceding case. 

Determination of harmonic function 8 from expression (7) or of functions - 
8; Ely w2, E3 from expression (9) or from similar equations constitutes the 
peculiar difficulty of the corresponding problem of elastic equilibrium. 
are not concerned with demonstrating the fact here that expression (7) or 
equations (9), for example, keep their meaning on surface cry and that they are 
suitable for determining the values there of 8 or of 8 ;  wl, w2, w3 as finite 

We 

- - -  
I 

, and continuous functions of the points in IS. That will certainly be the case 
under very general conditions, but an exact reply to such questions would en- I 

I 

I tail a theorem for the solution of our problems, and we hope to be able to 
I return to this later on. 
1 

11. Problems in Which the Elastic Body Is 

Limited by an Infinite Plane 

I 
1. Case i n  which u, V ,  w are given on the l imit ing plane. Let us 

assume that the elastic body is limited by the plane z = 0 and occupies that 
region of space in which z > 0. 
point (x, y, Z) inside S reduces to 
6 

In this case Green's function G for the 



1 1 '  
r rt 

where r and r1 are the distances of point (x, y z )  and of the point symmetri- /136 
cal to it with respect to plane z = 0 from the same point ( S, r l ,< )  in S. 
noting that for 5 = 0 

---. 

Hence 

equations (5 ' )  and similar ones immediately give u s  

while 0 will be given by 

a (11) 
e=--  

by which 

@ .  0 (12) 
Contrariwise, assuming that functions u, v, w given on u are finite amd 

I continuous functions of the points in plane 
derivatives of the first order with respect 

I at infinity of the same plane (5 they become 
of 1 , the integrals 

r 

0 0 

(5 which also have finite partial 
to x and y, and that in the points 
zero with orders superior to that 

are finite and continuous functions in the whole space. Their first derivatives /L37 

and their second derivatives 

7 



are finite and continuous functions in S and tend toward finite limits when we 
approach the points in a; functions u, v, w given by equation ( l o ) ,  when it is 
assumed that integral I : d u  is given by equation (121, are regular and iden- 

tically satisfy equations (1) in S, whatever may be the values of the constants 
X and 1-1. Moreover, when we approach the points in u they tend toward the 
corresponding values assigned to these points. Function 6, fimlly, givenby 
equation (11) is harmonic and regular in S and on 0 tends toward finite values. 

U 

2. Case in which 
G1 relative to space S 

L, M ,  N are given on the l imit ing plane. 
and to point (x, y, z )  reduces to 

Green's function 

2 and therefore on u takes on the value of T . If for 5 = 0 it is noted that 

a a  
CGS nE=0, cos n q = 0 ,  cos.n<= 1 --- ' d n -  a E' 

equations (8) immediately give us 

and to complete the solution of our problem the harmonic functions €),Fly Fz 
9f the  following equations 

/138 
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I remain to be determined. 
\ - To find 8, w2, from these equations, let us note that since 

rj: a ox a Y- a q r  2 2  r 
d Q = jz a o d c  r, a ~ Tr 3 rl Q = I- 208's,  - -& j B d u = S a 9 a G .  -- 

U 

9 - - - 9  

0 U I - 6  U '  

the same differential relationships hold between integrals 

IEda;  I : d G ,  I?!do, % d o ,  
, r  r r 
0 0 0 I 

Hence as between the quantities 8; Fly r 2 ,  z3. 

and the first equation of expression (14) gives us 

I from which we have 

The other two equations of expression (14) then immediately give us I139 
. .  1 

9 



and all the elements of the problem have been determined. 

of the points 

the integrals 

Inversely, if we assume that L ,  M y  N are finite and continuous functions 
, in CJ and become zero at infinity with an order higher than 

rL 

will be finite and continuous harmonic functions in all of S. 
derivatives of the first type and the first-tnd second-order derivatives of 
integrals of the second type will converge to finite limits in the points in 
CJ, for which the functions 8, El, c2 
will be harmonic and regular in S and will converge toward finite limits on CJ. 
If then we note that 

The first-order 

determined from expressions (15) and (17) 

it turns out that also 
regular functions in S 

the values of u. v, w determined from expression (13) are -~ 
and identically satisfy expression (l), whatever X and 

LI iay be. If, finally, we note that for expression (13) /140 

under the assumption that derivatives--, " I  have finite limits on cry a s  ay' Fa 
- 

which is certainly obtained if it is assumed that L, M y  N have their finite 
first derivatives on CJ, it is found that 

and the neighboring conditions 

By making the formulation 
L l o g ( z + r ) d G )  

10 



and expressions (13) take the form which was given them by Professor Cerruti: /141 

3. Case i n  which u, v ,  1v are given on the l imiting plane. To solve the 
problem now posed, we will make use of the formulas 

The problem is solved as soon as we succeed in finding 8, and this function is 
immediately given by equation 

11 



. 

. 
I Under condi t ions  which are easy t o  i n v e s t i g a t e ,  i t  is  conversely shown 

t h a t  f o r  func t ions  u ,  v ,  N on p lane  o , a l l  t h e  condi t ions  of t h e  problem are 
s a t i s f i e d .  

4.  Case i n  which L, M,  w are given on the l i m i t i n g  plane. This  new 
problem is  a l s o  e a s i l y  solved wi th  t h e  formulas 

l a l L  
.wj= a;;G[,j7du+;j+]- , 

These formulas s o l v e  t h e  b o b l e m .  ;his can be  e s t a b l i s h e d  d i r e c t l y  when 
i t  is assumed t h a t  t h e  knowns s a t i s f y  condi t ions  on t h e  p lane  which are s imilar  
t o  t h o s e  which w e  have e s t a b l i s h e d  i n  the  preceding cases. 

W e  may a l s o  add t h a t  from t h e  last  two equat ions i n  express ion  (21) w e  
have 

and t ha t ,  t h e r e f o r e ,  9 i s  given simply by formula 

5. Cases i n  which u, M, ZJ o r  L, 13, w are given on the l imiting plane. 

We w i l l  assume t h a t  u ,  M y  w are given,  and 
These two new problems are i d e n t i c a l ,  s i n c e  one i s  der ived  from t h e  o t h e r  by 
in t e rchang ing  t h e  x and y a x e s .  
w i l l  w r i t e  t h e  formulas 

1 2  



In these formulas the only unknowns appearing are 8 and Zl. 
solve the problem it is sufficent to determine these two magnitudes. 
of them is immediately given by formula 

Therefore, to I143 
The second 

while 8 must be derived from an equation which, by taking advantage of equation 
(23), is reduced to 

Now since 8 is harmonic and moreover equals 

I 

it is easily found by setting 

I=Jelog(Z+r) t im,  
0 

that equation (24) may be given the form 

We can easily demonstrate the fact that there can be but a single function 
8, harmonic and regular in S, such that the corresponding function + satisfies 
expression (24'). If, in fact, two functions -- 8 and 8' -- could be deter- 
mined, by calling +'  the function analagous to + and related to e ' ,  the 
difference 

. f  $'=?--p . 

would have to satisfy equation 

13 

1144 



Now by s e t t i n g  

t h e  gene ra l  i n t e g r a l  of t h e  l a s t  equat ion  is  given by 

+ = fa (11) + f i  VI) + fi.(.) 
t2,  and z a l s o  may be 1' where f ly  f 2 ,  f g  are a r b i t r a r y  func t ions .  

regarded as a r b i t r a r y  parameters i n  o rde r  t h a t  J, s a t i s f y  equat ion A 2  = 0, it 
must be t h e  case t h a t  

But s i n c e  t 

f ' ,  = cost., f ' x  5 cost., f ' ,  = cost. 

I f  i t  i s  then  noted t h a t  8 must a l s o  become zero  a t  i n f i n i t y ,  i t  i s  found t h a t  
f y  = 0 and t h e r e f o r e  i n  i d e n t i c a l  fash ion  

On t h e  o t h e r  hand, i f  we c a l l  C', n '  t h e  coord ina te s  of x and y which appear 
on t h e  r i g h t  s i d e  of equat ion  ( 2 4 ' ) ,  i t  is e a s i l y  found t h a t  t h e  func t ion  of x, 
y ,  z s a t i s f i e s  

1 

a __ I I -. - 
i n  which da '  = dc'dn'  s a t i s f i e s  equat ion (24')  and i s  harmonic. The f i r s t  
p rope r ty  i s  e v i d e n t l y  f u l f i l l e d  s i n c e  the  func t ion  of x,  y 

s a t i s f i e s  equat ion  (24')  when t h e  r i g h t  s i d e  is  zero ,  and becomes i n f i n i t e  when 
x = E ' ,  y = n '  i n  t h e  manner of l og  r .  A s  f o r  t h e  second proper ty ,  i t  should 
be  noted  t h a t ,  i f  x i s  a func t ion  of t he  p o i n t s  i n  p lane  CI which becomes zero 
a t  i n f i n i t y ,  t oge the r  wi th  t h e  f i r s t  d e r i v a t i v e s  - I145 
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a 

and therefore 

for which (9 is a harmonic function which becomes zero at infinity. 

From expression (25) it is immediately found that 

Conversely, if u, M y  w on IJ are given as definite and continuous functions 
having finite partial derivatives of the first order, and moreover u, w become 
zero in the points at infinity in cj with order higher than 1 while M becomes r' 
zero with an order higher than 1 , the right side of equation ( 2 4 )  w i l l  be a 

r2 
harmonic function regular in S ,  becoming zero at infinity, and tending toward 

finite values on 0 .  Under these conditions, functions 4 ,  J: do and 8 ,  given 

by expressions (25) and (26), are harmonic and regular in S and tend toward 
finite values when we approach the points on IJ. 

expression (22) are regular in S, identically satisfy expression (1) in this 
same space, and satisfy the boundary conditions, as is easily demonstrated. 

I 

/146 

0 

The values of u, v, w given by 

6. Cases i n  which u, M, N o r  L, v ,  N are given on the l imiting plane. 
These two problems also differ only by the interchange of the x and y-axes and 
are solved like the foregoing. 
given, and we will write the equations 

Let us consider the case in which u, M y  N are 

15 



. 

It w i l l  be  s u f f i c i e n t  t o  f i n d  func t ions  8 and ; from t h e  two equat ions  1 

Now from t h e  second of t h e s e  equat ions  w e  d e r i v e  

+ f i i J 6  log (2 + r) dG) 
I 

8 

whence, by s u b s t i t u t i n g  i n t o  t h e  f i r s t  and in t roduc ing  func t ion  @ 
preceding case, i t  i s  found t h a t  @ must s a t i s f y  equat ion  

from t h e  

This  equat ion  i s  of t h e  same type  a s  equat ion  ( 2 4 ' )  and func t ion  @ i n  t h i s  
case, t o o ,  i s  determined as i n  t h e  preceding case. 

111. 

1. 

Problems i n  Which t h e  E l a s t i c  Body i s  Limited by a Sphere. 

Case i n  which u, v ,  w are given on the Zimiting sphere. InternaZ space. 

L e t  u s  ca l l  R and r a d i u s  of t h e  sphere whose i n t e r n a l  space S i s  occupied. 
by t h e  e las t ic  body. 

p o i n t  (x, y ,  z )  with  r e s p e c t  t o  t h e  sphere of r a d i u s  R ,  t oge the r  wi th  t h e  
p o i n t  (x, y ,  z )  i n s i d e  S and t h e  d i s t ances  r ,  r l  of t h e s e  two p o i n t s  from any 
p o i n t  t s ,  T), C) i n  S. L e t  u s  moreover set 

L e t  u s  cons ider  po in t  (xl, yl, z , ) ,  t h e  r e c i p r o c a l  of 

16  



A s  is very well known, Green's function G relative to point (x, y, z )  and 
to the sphere of radius R is given by 

G=-----, t R 1  
c I r r  

while on surface 0 of the sphere of radius R 
d G  aG It' - I' 
K = - ( F ) F R ~ ( T ) ~ B  

Consequently, expression (5') and similar ones will immediately give us: 

0 j !  #E--.---- 7:;s; d o + --!- a + u  (B - 1') GJ- a e  d a, 

1 - b  (R' - 
8 z R p  r 

0 

I R f - P  v 
0 = -J- 4 x R  t-3 d o  . + 8 , . R p  

0 0 
I 

U 

W=- R'-Z' ' W  y - ( p - l ' ) G J ; d a ,  - a e  
4 s R  F d a f  8 e. R p  

To solve the 

where 
a -  a a a 

1-  = x - + y - + z & -  a r  ax a~ 
Therefore, let us remember that 

4 x R 6 =(E* - 
From this it follows that 0 is 
the harmonic function 

determined by equation (32) when we have found 

of the equation 

The general integral of this equation is given by 

1148 - 

1149 - 

(33) 

17 



where x is an arbitrary function of any two parameters which, together with 2, 
determines each point in the space. 
this is true of the first part on the right side of equation ( 3 3 ) ,  even when 

as is 2 = 0, it follows from this that x = 0 must be true if ->O,/ 

Noting that 0 must be finite in S and that 

F 
A T 3 1 *  

precisely the case in elasticity. 
finite in the whole sphere S ,  including the surface, and is a harmonic function 
in S .  This second statement is proved by noting that if 

The expression of 0 thus determined is 

1 

p = 2-e I Z+'+ d I ,  I 

0 - 1  
where c is any positive constant, we also have 

1 

1 ' I  

and thus if JI is harmonic, then 0 is also harmonic. 

It also easily results from the fact that /150 

and from known properties of the potential function that, if u, v, w are finite 
and continuous functions with two parameters which specify the (7 points together 
with the first derivatives, and if they have second derivatives with respect to 
these finite parameters, the first derivatives of 0 and 8 strive toward finite 

* If in fact we call 2, a, f3 the polar coordinates of a point we have 
\ ** 8 cosacosp a sen! a 1 

-e-- fi- a - scn t , cosp -  a1 -k I a a  1senaaj3 
and hence 

** Sen is correctly sin in English terminology. 

18 
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. 
values on 0, and expression (1) and the neighboring conditions are identically 
satisfied. 

la .  Extern2 space. Let us now resolve the same problem for the case in 

Green's function G 
which the elastic body, instead of occupying the space inside the sphere of 
radius R, occupies all the indefinite space outside of it. 
even in this case is 

It is merely to be noted that in the present case point (x, y, z) is outside 
sphere CJ, while (XI, y1, 21) is inside. 
over 0, we have instead 

For the value of the normal derivative 

d G  a G  P - P  
dn = ( (F)e=R ; ' ' 

and formulas (10) are modified as follows: 

is nevertheless still equation (31'), and therefore $ will always be given by 
expression (33), in which we take m and 2 for the integration limits. The 
expression for 0 must be determined so that the limit of the product of 20 
and 1 =m does not become infinite. 
to set x = 0 and will thus be able to write 

Therefore, even in this case we will have /151 

The further considerations do not differ from those in the preceding case. 

2. Case in which L,  M, N are given on the limiting sphere. Internal space. 
To obtain the solution to this problem, it is well to realize that the quantities 
L, M y  N must be assumed to satisfy the conditions 

19 



. 
I . 

which are necessary so that the elastic body will be in equilibrium. 

The simplest way to solve the problem seems to me to be the following. 

Let us first of all observe that equation (1) give place to others 

which means that equations (1) are themselves transformed into them when 
L 

operation Z 
I az 

formulas also: 

is applied to the unknown functions. Let us note the following 

For the results of the preceding number, we may write: 1152 

. . . . . . . .  * . . . . . . . . . . . . .  
and these formulas, being 

by Green's theorem, reduce immediately to these others: 

(39) 

(38' )  

20 
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+ -?Le- (p- 
16: :Rp  

U . . . . . . . . . . . . . . . . . . . . . .  
The surface conditions with 

l 
d a z *  -SI-- 

Y 3= B' C O S ? b t J = - -  
. R' R' d n  a i  ' 

cos n x = - - 
on the surface become in the present case 

whence : 
as  L a 3 z ,  . - - _ - _ _ _ 8 - - -  R $3 '') 9 * .  * a i  2 p  2:1 R 

for which, by eliminating cy a w  by means of these relationships, we 
a p  a p ' a p '  

will have 

Q 

(38' ') 
2 0  . 

because of the first terms on the right sides of equation (38'). 

It is also convenient to transform these formulas, first noting that 

. . . . . . . . . . . . . . . . . . . . . . .  * * I  
whence 

Secondarily, among the magnitudes 

I153 

( 4 0 )  

there are the same differential relationships which exist among the quantities 
0 ;  z 2 ,  w3. In fact, the expression 

21 



for example, becomes zero on u and its A 2  is 

which, although harmonic, is identically zero in the entire sphere S and will 
be 

In short, by means of this relationship, expression ( 4 0 )  reduces to the form 

~ Thus the equations (38") because of expression ( 4 0 ' )  and similar formulas become / 1 5 4  

I .  1 
(38 ' ') 

+ l tp  (E' - a Z  4 4 z ~ p  . . ,  4 
4 P  

The solution of our problem is reduced to determining the four unknown 
functions 8; wl, G2, z3 by the four following equations, of which -- for the 
sake of brevity -- we write only the first two, since the other two may be 
imediately derived from the second by circular permutation: 

22 



1155 - To find 8, let us again use the notation in the preceding section: 

With @ now indicating the expression given by 

the first equation (41) reduces to 

or to 

where a and b 

The values of 

and therefore 
numbers. The 

are the roots of the equation 

these two roots are given by 

2 1  + p + ,1(2 A + p ) * -  2 (3 1 + 2 (1 + P), 
2 0 + tL.1 

2 1 + p- J(2 1 +PI* - 2 (3 1 + 2 ~ )  0 + PI 
2 (1 + P) 

a== 

b -  

since X + v > o, v > 0 they are always conjugate imaginary 
general integral of equation (44) or (44') is given by 

1 I 

(42) 

(43) 

(44) 

(44') 

where x1 and x2 are two arbitrary functions of any two parameters which together 
23 
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with  Z l o c a t e  each po in t  i n  t h e  space.  
equat ion  (45) i s  a harmonic func t ion ,  r egu la r  i n  S and real because i t  does no t  
change va lue  when a and b are interchanged.  For t h e  second p a r t  t o  be  real ,  it 
i s  necessary  t h a t  x 1  and x2  be conjugate  imaginary numbers. 

The f i r s t  p a r t  on t h e  r i g h t  s i d e  of 

Since I 1 5 6  

may be w r i t t e n  and s i n c e  i n  t h i s  form i t  is  e a s i l y  v e r i f i e d  t h a t  t h e  express ion  
is  n o t  harmonic i t  w i l l  t hus  be necessary t o  set 

XI = x, = 0. 
Therefore ,  f o r  I$ we have 

Af te r  I$ has  been found, and the re fo re  8 by means of express ion  (42) ,  t h e  
r o t a t i o n s  ;I, w2, ~ C J  are c a l c u l a t e d  by simple quadrature .  
(41) may i n  f a c t  be  w r i t t e n  

The second equat ion  

N d  

When t h i s  equat ion  is  d iv ided  by 2, i n t e g r a t e d  between 0 and 2,. and when it 
i s  noted t h a t  t h e  a r b i t r a r y  quan t i ty  introduced by i n t e g r a t i o n  -- s i n c e  i t  must 
be a harmonic func t ion  r e g u l a r  i n  S and independent of Z -- cannot be reduced t o  
anyth ing  bu t  a cons t an t  h l ,  w e  f i n d  

I f  i t  i s  noted t h a t ,  because of t he  r e l a t i o n s h i p  

w e  may write I157 

24 



it immediately results that the first term on the right side of expression (47) 
is also finite for 2 = 0.  

In similar fashion 82 and 83 are calculated, and the relative expressions 
are obtained by expression (47) by cyclic interchange of the indices 1, 2, 3 
and the letters x, y, z; L,  M y  N. 

Displacements u, v, w which still remain to be determined are obtained 
from expression (38'") by quadrature. 
(38"') by 2, integrate between 0 and 2, and note that the arbitrary quantities 
introduced by integration can be reduced only to constants kl, k2, k 
like the other parts of u, v, w, -- they must be functions regular in S and 
satisfy equation 

If we divide each of the equations 

since -- 3 

A2A2 = 0, as well as be independent of 2, we immediately 
I 

- + -&- X+p (R' - E')- ae - - 3 -- (E- Z') & a ?  1 + k, - h, y + h, 2, a x  4 4 % ~  
I 

a e  3 x + ~ .  a? 
4 4 z R p  a Y  

(R' - I * )  - 1 + E ,  - h,  2 + h, x, l + w  + 4I* (R' - QG - - 

Here, too, if we note that, because of the relationships, 

0 

we may write 

and that 

find 

(48) 

I 

1158 
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it r e s u l t s  t h a t  express ions  ( 4 8 )  f o r  u ,  v ,  w are a l s o  f i n i t e  f o r  Z = 0. 

Conversely, i f  L ,  M y  N are f i n i t e  and continuous func t ions  of t h e  coordi-  
n a t e s  of t h e  p o i n t s  of sphere  u t oge the r  w i th  t h e  f i r s t  d e r i v a t i v e s  and they  
have f i n i t e  second d e r i v a t i v e s ,  t h e  Q determined by ( 4 3 ) ,  t h e  9 determined by 
express ion  ( 4 5 ' ) ,  and t h e  8 given  by t h e  second 'equat ion  i n  express ion  ( 4 2 )  by 
means of @ are harmonic func t ions  r egu la r  i n  S and tend toward f i n i t e  va lues  i n  
t h e  0 p o i n t s ,  t oge the r  w i th  t h e  f i r s t  d e r i v a t i v e s .  This  occurs  because,  f o r  
example 

L d c  8 . a  L d c  a L d a  
& [ ( - 7 J 7 - ] = 2 1 s z  a J - + 3 d -  u .  r -  

and because of t h e  well-known p r o p e r t i e s  of t h e  p o t e n t i a l  func t ion .  
w 1 ,  G2,  G 3  
harmonic and r e g u l a r  i n  S which tend toward f i n i t e  va lues  i n  u po in t s .  
t h e  equat ions  

S i m i l a r l y ,  - 
given by express ion  ( 4 7 )  and similar equat ions  are func t ions  

S ince  

aU a 9  a w  1 a w  
; 8 = G +  ay + 0, = -(--E). . . I 

2 a Y  -- - 1 - - -  
are e v i d e n t l y  s a t i s f i e d ,  i f  express ion  ( 2 )  i s  s a t i s f i e d  f o r  t h e  8 ;  u1, ok2, 03 
express ion  (1) i s  a l s o  s a t i s f i e d .  To show t h a t  t h e  va lues  of u ,  v ,  w which 
w e  have found a l s o  s a t i s f y  express ion  (l), i t  t h e r e f o r e  s u f f i c e s  t o  demonstrate 
t h e  f a c t  t h a t  t h e  corresponding va lues  of 8 ;  GI, w 2 ,  w 3  s a t i s f y  express ion  ( 2 ) .  
I n  t h e  meantime, 

I 

i a  

I 
is e a s i l y  der ived  analogously t o  expression ( 4 6 ) .  However, on t h e  o t h e r  hand, 

1159 by express ion  ( 4 2 )  - 

hence, 

because of express ion  ( 4 4 ) .  I n t e g r a t i n g  t h e  equat ion  

be r e g u l a r  i n  S,  i t  i s  + F G  w i t h  r e s p e c t  t o  Z on cond i t ion  t h a t  ? ? - .  - 
a Z  a9 
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found that 

or expression (2) is satisfied. Finally, since from expression (38"') it follows 
that 

. . . . . . . . . . . . . . . . . . .  
tend toward finite values when Z = R, the surface conditions are ' a  a ?  

a t  a x  and - - 

also satisfied. 

The indicated method of solving the preceding problem holds true whatever 
the values of A and v. However, if A + 1.1 > 0 ,  1.1 > 0 ,  we may also state that the 
problem has a single determinate solution, unless there is an arbitrary rigid 
displacement of the elastic body. 

2 .  External space. The problem of elastic equilibrium for the space 
external to the spherical surface of radius R, when L,  M, N are given on the 
surface, may be solved by a method entirely analogous to the preceding. Taking 
our start from expression (37), after having applied formulas ( 3 4 )  to it, and 
the conversion formula /160 

we find 

. . . . . . . . . . . . . . . . .  
Since now on (5 

. a  a cos 11 x - . - 9 cos 9 )  y = Y cosnz = 5. 2 

R '  dnea2' . .  R- ' B 

the boundary conditions give us 

27 



and therefore we may write: 

. . . . . . . . . . . . . . . . . . . . . .  1 

Noting then that 

4 c R  
!J 

we find 

0 . . . . . . . . . . .  . . . . . . . . . .  
and hence in place of expression (38"') we will have the formulas /161 

8 . . . . . . . . . . . . . . . . . . .  I 

These equations are identical to those in expression ( 3 8 " ' ) ,  except in the 
sign of the last term. 
must satisfy will be identical to expression (41), except for the sign of the 
last term. If now, still setting 

In similar fashion, the equations which 8; 61, G2, * _  W 3  

we note that 
a'p 

. - 4~ R 9 = 2  1- a i  +cp, 

we immediately find that C$ satisfies the same differential equation (44) when 
it is assumed that 0 is determined by the relationship 

28 



We w i l l  t h e r e f o r e  s t i l l  be a b l e  t o  set 

So lu t ion  of t h e  problem is  completed by t h e  formulas 

.. . . . . . . . . . . . . . . . . . . . . . . .  

. \  

. . . . . .  ' . . . . . . . . . . . . . . . . . / I  

Funct ions @, I$, and 8 given by expressions (51) , (52) , and (50) become 
ze ro  a t  i n f i n i t y ,  and t h e  o t h e r  func t ions  81, 8 2 ,  Q3; u ,  v ,  w have been de te r -  
mined on t h a t  condi t ion .  An a p o s t e r i o r i  check i s  made wi th  cons ide ra t ions  
s i m i l a r  t o  t hose  made i n  t h e  preceding case.  

3. Case i n  which L, v ,  w are given on the Zirniting sphere. Because of 
t h e  symmetry of t h e  s p h e r i c a l  s u r f a c e  with regard  t o  t h e  coord ina te  axes ,  t h e  
problems i n  which u,  M y  w o r  u ,  v ,  N a r e  given on t h e  sphere  do n o t  d i f f e r  from 
t h e  problem which w e  propose t o  so lve ,  except f o r  t h e  d i f f e r e n t  name of t h e  
c o o r d i n a t e  axes. 
w i l l  d i s r e g a r d  t h e  case of e x t e r n a l  space,  because i t  i s  easy t o  make t h e  ex- 
t e n s i o n  and t h e s e  problems do not  have the  importance of t hose  a l r eady  solved 
f o r  e l a s t i c i t y  theory .  

I n  o rde r  no t  t o  dwell  t oo  long on t h e s e  new problems, w e  

W e  w i l l ,  t h e r e f o r e ,  begin f i r s t  of a l l  t o  e s t a b l i s h  c e r t a i n  n o t a t i o n  and 
c e r t a i n  formulas  which w e  w i l l  cons t an t ly  use ,  i .e . ,  l e t  u s  set 
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9 ,  9 ' ;  $i, 
relationships gold: 

J i ' .  are harmonic functions, regular in S and among them the following 

t 
p . = - ( 2 c P ' ) - ~ ' $ t -  a a ' P I  -, <=-pz; 1 

a i  a i  1 

This system of formulas is completed by the formulas connecting 9 and $.and /163 
0 and ai, i.e., 1 

4 x R 6 = 2 2 7- aF + 

It is easily seen that 9 ' ;  $'I, +I2, $I3 satisfy the same differential relatioft- 
ships satisfied by 6 ;  $1, $2, $3 and therefore 8.; 81, a2, 63. We have, for 

* More generally the expressions 

where c is any positive constant, are harmonic, regular in S, and related by 
the same differential relations by which e; G1, G2, G3 are related. 

may be said of the expressions which are obtained by performing operation 

The same 

1 

- h & ~ . . . d l  1 on 8; u;,, 9, &, any number of times, the value of constant c being 
1c 
. o  

variable each time the indicated operation is applied. 
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and let us note that 

- -  ..- . . - -  . .. . . . . . . . '+ . . . *  1. .. -. . .  
. .  

if, as we assume, conditions 

L a c = ( ) , . . .  
I 

are satisfied. 

After this, in order to solve the problem we will make use of the first 
of formulas (38' ' ') , divided by Z and integrated from 0 to 2, and of the last 
two formulas (30) : 

I 

The problem is reduced to determining the unknown functions 0 ;  6 B B of /165 
equations 

1' 2' 3 

* Formulas of this sort could have been derived by starting from expression (8) 
and substituting expression 

therein for GI. With the formulas to which we are referring, it would also 
have been possible to solve the problem in Section 2 ,  but these formulas are 
less susceptible to easy transformations than are those which we preferred. 
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I n  o rde r  
of t h e s e  

t o  do t h i s ,  l e t  us  meantime no te  t h a t  t h e  l a s t  two terms of t h e  
equa t ions ,  except  f o r  t h e  s i g n ,  may be w r i t t e n  

I 

0 

t h e  t o t a l  of terms (60) reduces t o  

first 

(60) 
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We o b t a i n  t h e  last  t ransformat ion  by s u b s t i t u t i n g  t h e  va lue  given by t h e  
(y f i -2 -P;  a a 

a y  ,I 

a _ '  i 
a?! 

second of equat ions  (59) f o r  G1, and have ind ica t ed  by 

t h e  ope ra t ion  which c o n s i s t s  of performing ope ra t ion  yG-z- a 

t w i c e .  

exp res s ion  (62) is  transformed i n t o  t h e  o t h e r  

33 



From t h i s  equat ion,  4 '  must f i r s t  of a l l  be der ived .  For t h i s  purpose,  i t  i s  
w e l l  t o  in t roduce  p o l a r  coord ina tes ,  f o r  example, s e t t i n g  

Z = t C O s a ,  y = t s e n a c o s p ,  z =  t senasenp.  1 

It i s  then  immediately found t h a t  

a - a  . 
y s - z - = -  a Y  a$ 

a 

and t h e r e f o r e  express ion  (62 ' )  i s  transformed i n t o  t h e  o t h e r  

- . 

I f  t h e  deformation comes from r o t a t i o n  about t h e  x-ax is ,@'  i s  determined 
by quadra tures .  

I n  t h e  genera l  case, t h i s  equat ion ,  t ak ing  l o g  2 f o r  t h e  indepmdent  vari- 
a b l e  i n s t e a d  of 2, becomes an equat ion  with cons tan t  c o e f f i c i e n t s  of t h e  e l l i p - /168  
t i c  type  which can be  completely handled by t h e  method of success ive  approxima- 
t i o n .  However, t h e  easiest and most n a t u r a l  way t o  handle  t h e  p re sen t  ques t ion  
seems t o  u s  t o  be  t h a t  based on t h e  u s e  of s p h e r i c a l  func t ions .  I f  w e  set 

i n d i c a t i n g  harmonic s p h e r i c a l  polynomials of degree n by Sn,  Vn, Wn , t h e  r i g h t  

s i d e  of equat ion  (62") w i l l  be  reduced t o  
- -  I . .  - . .  I .. . . .  - 

p a e ,  -+-+--- av, aw,, 1 

. -  1 + 2 p  u ( . : J -  ax ay  82 2 1  
. e  - I 

and t h e  q u a n t i t y  under t h e  summation s ign  w i l l  be  a harmonic s p h e r i c a l  polynomial 
of deg ree  n-1. 
may assume i t ,  too ,  t o  be  expanded i n t o  a series of harmonic s p h e r i c a l  polynom- 
i a l s  i n  o r d e r  t o  have 

S ince  now 4 '  must be a func t ion  harmonic and r e g u l a r  i n  S ,  w e  

8 - ?' =-~qU* - . 
V 

Since  t h e n  ev iden t ly  
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the following will have to be true: 

Introducing polar coordinates in place of Cartesian coordinates, it is known 
that the right side may be given the form 1169 

I 

in which the On 
must be assumed to be known. 
made to make the last equation identical, it is found that 

are functions of cx only, and in which the constants &,i, BnYi ,i 
If $A is put in similar form and the attempt is 

must hold and therefore 

The calculation performed shows at the same time that there is but one 
function $ '  satisfying the conditions imposed. Since, moreover, the series 

l 

is absolutely and uniformly convergent in S, series (63) also has the same 
property. 

When $ '  has been found, 0 and 8, as well as G1, v,w are consequently 
found. 
Gi3;uare determined. 
written taking the relationship 

However, it is easy to show that $ I 2  and $ ' 3  and therefore $2, $3; G 2 ,  

The third equation of expression (59) may in fact be 



i C n s ide r  t t i o n ,  and from a s imilar  formula even 83  i s  found. Quad 
I w i l l  b e  used t o  f i n d  $2 and J13, and hence Q ' 2  and Jl'3. and u. 

t u r e s  /170 

It is  easy t o  v e r i f y  t h e  f a c t  t h a t  under ve ry  broad cond i t ions  f o r  t h e  d a t a  
t h e  formulas found s a t i s f y  a l l  t h e  condi t ions  imposed. 

4. Case in which u, M, N are given on the  limiting sphere.  Here too  w e  
no te  t h a t ,  because of t h e  symmetry of t h e  sphere ,  t h e  problems i n  which L y v , N ,  o r  
L,b$ware given on u do n o t  d i f f e r  from those proposed h e r e ,  except  i n  t h e  d i f -  
f e r e n t  name of t h e  coord ina te  axes .  
encountered i n  t h e  s o l u t i o n  of t h i s  o the r  problem are of t h e  same n a t u r e  as those  
which w e r e  encountered i n  t h e  preceding problem. 
t o  i t s  s o l u t i o n .  

L e t  us  add r i g h t  away t h a t  t h e  d i f f i c u l t i e s  

Therefore ,  we merely a l l u d e  

The s t a r t i n g  p o i n t  w i l l  be  t h e  formulas 

. .  

X 4 - P  a? + --- (23'- 21) - + cost. 
8%R,u a Y  

. . .  

and a n  a t t empt  w i l l  t hus  be made t o  determine 0;  81, g2, 83 so t h a t  t h e  fo l lowing/ l71  
equa t ions  w i l l  b e  i d e n t i c a l l y  s a t i s f i e d :  
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2 ii, = . . . .  . . . . . .  . .  . .  * . .  . . . .  
Now because 

1 
2 z R  

- -  
/172 - 

37 



. 

the second equation in expression (66) is written: 

while the first equation (66) is easily formulated as 
I 

! 1  

a - 
Performing the operation 2 a. 2 on this equation, noting 

!/ 1 are exchangeable, and making use of and z-- 

page 33,  and (66') we find 

a a 
a9 

that operations 

the identity given on 

a* e' ??' \ - 830' 
2(1.+2~;13- .5-  f ( 9 ~ f i ~ : , ) I * ~ + ( 7 ~ + 1 0 ~ ) ~  a r  

a i  

a s  'p* as 'P' 
a i a P  a v 

= 2 l g [ ~ . G +  a a n  R r $ + Z ) ] - -  
(67) - 2 ('. + 2 p) I - -* + (3 X + 2 p) - 

From this equation 4 '  is found as above by developing the right side into /173 
spherical functions; (p, 8 ,  and u are then determined, and $'I, q1 and G~ by 
quadratures, starting from expression (66 ' ) .  Substituting 

into the third equation (66) for ,.&#:*'I , we obtain an equation which, with 
a x  a 2  I 

simple quadratures, can give us $ '  

find $I3, $3 and G3 and v and w also are consequently found. 

and hence $2, i3 2'  2 '  In the same manner, we 

IV. Other Boundary Conditions Which Are Suitable for Locating Solutions 
to Indefinite Equilibrium Equations for Elastic Isotropic Bodies 

1. Even a superficial examination of the solutions to problems of elastic 
equilibrium previously given is enough to convince us of the fact that they 
already contain all the elements for solving similar problems in which, instead 
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are g iven ,  o r  va lues  du dv dw of stresses o r  displacements ,  t h e  va lues  of - - - 
dn ' dn ' dn 

dw dv dw of u ,  v, dn , o r  va lues  of u ,  - - 
dn ' dn 

t a ined  from these  by in te rchanging  t h e  names of t h e  coord ina te  axes. The 
gene ra l  concepts i nd ica t ed  i n  Sec t ion  I may s e r v e  as guides  f o r  a t tempting t o  
s o l v e  t h e s e  problems i n  o t h e r  cases a l s o  i n  which 0 d i f f e r s  from a p lane  o r  a 
sphere.  

on s u r f a c e  0 ,  and those  which are ob- 

I have no knowledge t h a t  r e sea rch  has ever been done on t h e  most gene ra l  
s u r f a c e  condi t ions  which are compatible with i n d e f i n i t e  equat ions  (1). However 
l i t t l e  va lue  such r e sea rch  may have f o r  e l a s t i c i t y  theory ,  I neve r the l e s s  
b e l i e v e  t h a t  i t  can he lp  i l l u m i n a t e  t h e  s tudy of systems of l i n e a r  p a r t i a l  
d i f f e r e n t i a l  equat ions of o r d e r  h igher  than t h e  f i r s t ,  among t h e  s imples t  
of which must be considered those  of i s o t r o p i c  body equi l ibr ium.  Here w e  
should l i k e  b r i e f l y  t o  i n d i c a t e  several forms of s u r f a c e  condi t ions  f o r  which 
t h e  ca l cu lus  of v a r i a t i o n s  i s  s u f f i c i e n t  t o  demonstrate t h e  uniqueness and 
ex i s t ence  p r o p e r t i e s .  To b e  s u r e ,  t hese  proofs  -- bes ides  r equ i r ing  t h e  f a c t  
t h a t  u ,  v, w have r e g u l a r  d e r i v a t i v e s  i n  the  v i c i n i t y  -- are s u b j e c t  t o  t h e  
usua l  cri t icisms of D i r i c h l e t ' s  p r i n c i p l e ,  b u t  my opin ion  i s  t h a t  i n  s t u d i e s  
which are gene ra l  i n  n a t u r e  they  fu rn i sh  va luab le  i n d i c a t i o n s .  

/ 1 7 4  

L e t  u s  begin t h e r e f o r e  by g iv ing  equations 

va r ious  o t h e r  forms, a v a i l i n g  ou r se lves  of known i d e n t i t i e s :  

I f  by means of t hese  i d e n t i t i e s  w e  e l imina te  A*,, A2v, A2w from equat ions ( a ) ,  
w e  f i n d  t h e  equat ions  (2) a l ready  reported:  

I f  w e  e l i m i n a t e  , - a e  , i n s t e a d ,  equat ions 
ax ay az 

are found. F i n a l l y ,  adding equat ions (a)  and (b)  term by term, w e  o b t a i n  

W e  w i l l  pause only on forms ( a ) ,  ( c ) ,  ( d ) ,  (e )  of equat ions  (11, b u t  it is  
clear t h a t  o t h e r s  may b e  obtained from them by t h e  same, o r  s i m i l a r ,  methods. 

L e t  u s  now mul t ip ly  equat ions ( a )  r e spec t ive ly  by 6u, 6v, 6w, l e t  us  
perform summation, and i n t e g r a t e  over  a por t ion  of space S. 
f i n d  

We thus  immediately 
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where 

I f  i n  equat ion  ( f )  w e  s e t  6 u = u, 6 v = v, 6 w = w, t h e  same equat ion  i s  
changed i n t o  t h e  o t h e r  

f 175 

Assuming t h a t  on s u r f a c e  u t h e  condi t ions  
I 

e cos n a - c, to = 0 d w  X + : L  
d n + P  

are to be s a t i s f i e d  -- cl, c2,  c3 being p o s i t i v e  cons t an t s  -- express ion  (g) 

g i v e s  us:  

and consequent ly  s i n c e  - A + ' > 0 t h e  following must be t r u e  i n  a l l  of S and 

on o :  u = v = w = 0. With t h e  usua l  reasoning,  i t  i s  then  deduced from t h i s  
r e s u l t  that a system of s o l u t i o n s  u ,  v ,  w of equat ions (a) wi th  t h e  boundary 
c o n d i t i o n s  

' 

i n  which L ' ,  M ' ,  N' are known funct ions  of t h e  p o i n t s  on o ,  is  uniquely de t e r -  
mined. 
on o are s u b j e c t  t o  t h e  condi t ion  

From express ion  ( f )  i t  r e s u l t s  i n  t u r n  t h a t  t h e  func t ions  u ,  v ,  w which 
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and minimize t h e  i n t e g r a l  

A t r $ - A V  4- A t 0  f - 
P I 

s a t i s f y  t h e  i n d e f i n i t e  equat ions  ( a )  and t h e  s u r f a c e  condi t ions  ( a ’ ) .  When 1176 
t h e  ex i s t ence  of t h i s  minimum i s  admit ted,  t h e  theorem of ex i s t ence  is  a l s o  
proved. The cons t an t s  c c c3 may a t t a i n  t h e  l i m i t i n g  va lues  0 and m i n -  

dependently of each o t h e r .  
1’ 2’ 

This  reasoning may a l s o  be app l i ed  t o  o t h e r  forms (c ) ,  ( d ) ,  (e) of equa- 
t i o n s  (1) and a determinate  form of t h e  s u r f a c e  condi t ions  compatible wi th  t h e  
same equat ions  w i l l  correspond t o  each of them. These may be w r i t t e n  thus  

/ d u  
d n  

L”’-c, I I  + (1, + 2p) - + 2 (I .  -i- p) (05, cos rz y - t72 cos 1s z )  = 0 , .  . . 
L“ - C , f l +  ‘A 0 cos11 x + 2 p  - + 9, cos ft y - (Z* cos11 2 = 0 ,  . . . (: :: 1. 

The la t te r  con ta ins ,  as a p a r t i c u l a r  case, t h e  form introduced a t  the 
beginning which is  s u i t a b l e  f o r  g iv ing  s u r f a c e  stresses o r  displacements .  

Every t i m e  t h a t  t h e  s u r f a c e  condi t ions  are such t h a t  t h e  one corresponding 
t o  t h e  x-axis con ta ins  u o r  du and none of t h e  o t h e r  displacements  o r  normal 

dn 
d e r i v a t i v e s ,  and a similar s i t u a t i o n  p r e v a i l s  f o r  those  corresponding t o  t h e  
y-axis and z-axis ,  an  a t tempt  can be made  t o  s o l v e  t h e  problem of determining 
t h e  s o l u t i o n  of equat ions  ( a )  corresponding t o  t h e  given s u r f a c e  condi t ions  
us ing  t h e  p r i n i c p l e s  expounded i n  Sect ion I. 

V. Some Observations on the Precedinq Resu l t s  

1. The problems re la t ive t o  a p o r t i o n  of space l i m i t e d  by a p lane  o r  by 
a sphe re ,  which w e  have s tud ied ,  must be considered as t h e  s imples t  among t h e  
problems of  e las t ic  equi l ibr ium of an i s o t r o p i c  body. 
by t h e  p rope r ty  t h a t  t h e  equat ions ,  on which determinat ion of t h e  magnitudes 
8 ;  k k ii~ depends, may be given i n  t h e  form of o rd ina ry  d i f f e r e n t i a l  

equa t ions  o r  p a r t i a l  d i f f e r e n t i a l  equat ions ,  whi le  i n  t h e  gene ra l  case, t h e s e  
magnitudes w i l l  appear i n  t h e  equat ions  mentioned as s u r f a c e  i n t e g r a l s  i n -  

harmonic f u n c t i o n  i n  a p o r t i o n  of space l i m i t e d  by a p lane  o r  a sphere  is 
e a s i l y  expressed by means of only t h e  d e r i v a t i v e s  of t h e  p o t e n t i a l  func t ion  of 
a m a s s  d i s t r i b u t e d  on t h e  p lane  o r  t h e  sphere  wi th  a d e n s i t y  p ropor t iona l  t o  
the values which the same harmonic func t ion  assumes on the t h e  su r face .  

These are cha rac t e r i zed  

1’ 2’ 3 

1 1 7 7  dependent of them. The f e a t u r e  mentioned is  r e l a t e d  t o  t h e  f a c t  t h a t  every - 

41 



c 

L e t  u s  add t h a t  t h e  problems relative t o  t h e  p o r t i o n  of space  l i m i t e d  by 
a p l ane , . and  those  relative t o  t h a t  l imi t ed  by a sphere ,  are no t  independent of 
each o t h e r  because,  on t h e  con t r a ry ,  the f i r s t  may be  e a s i l y  der ived  as p a r t i -  
c u l a r  cases of t h e  second when t h e  rad ius  of t h e  sphere  inc reases  i n d e f i n i t e l y .  
However evident  i t  may appear ,  I do no t  t h i n k  t h a t  i t  i s  u s e l e s s  t o  demonstrate 
it r igo rous ly ,  a t  least i n  one case ,  p a r t i c u l a r l y  because I b e l i e v e  t h a t  t h i s  
has  never  been done e x p l i c i t l y .  Therefore ,  l e t  us  assume t h a t  t h e  sphere of 
r a d i u s  R considered i n  Sec t ion  111 has i ts  c e n t e r  a t  p o i n t  x = 0, y = 0 ,  z = 
= -R, i n s t e a d  of a t  t h e  coord ina te  o r ig in .  It w i l l  t hen  be  necessary  t o  write 
z + R and 5 + R i n s t e a d  of z and 5 i n  t he  formulas i n  t h a t  s e c t i o n .  Assuming 
x, y ,  z t o  be f i n i t e ,  i t  i s  c l e a r  t h a t  

L e t  u s  now t ake  i n t o  cons ide ra t ion  formulas ( 3 4 )  and ( 3 5 ) ,  which g i v e  t h e  
s o l u t i o n  of t h e  problem of elastic equi l ibr ium f o r  t h e  space o u t s i d e  t h e  sphere  
of r a d i u s  R when t h e  s u r f a c e  displacements are given:  

with 

A t  t h e  l i m i t  f o r  R = m y  t h e  va lues  of u ,  v ,  w; 0 become: 

a 

and s i n c e  i n  t h e  case of t h e  sphere  

6 I 
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a t  t h e  l i m i t  when R = m w e  have 

These va lues  of u ,  v ,  w and t3 co inc ide  p r e c i s e l y  wi th  those  g iven  by express ions  
(10) and (11) of Sec t ion  11. 

2. It i s  obvious t o  no te  t h a t  t h e  same procedure which w e  have ind ica t ed  /179 
f o r  t h e  three-dimensional case is a l s o  t r u e  f o r  t h e  two-dimensional case, and 
even more gene ra l ly  -- i f  one wished t o  cons ider  i t  -- f o r  t h e  case of t h e  
equ i l ib r ium equat ions  of an  i s o t r o p i c  body i n  l i n e a r  space wi th  any number of 
dimensions. 

I n  o r d e r ,  however, t h a t  one does not f e e l  t h a t  I go too f a r  i n  my estima- 
t i o n  of my views -- above a l l  i n  regard t o  t h e i r  o r i g i n a l i t y  -- I w i l l  now 
n o t e  that  i t  i s  easier t o  exp la in  myself by showing s u f f i c i e n t l y  c l e a r l y  what 
t h e s e  c o n s i s t  o f ,  because t h e  r o o t s  of t h e  method which I have followed t o  
o b t a i n  t h e  s o l u t i o n  of t h e  e las t ic  equi l ibr ium problems of an  i s o t r o p i c  body 
may b e  found even i n  t h e  o l d e s t  works on t h e  s u b j e c t .  
t r u e  f o r  problems i n  which c e r t a i n  unknown func t ions  are assumed known and are 
determined a f t e r  having s a t i s f i e d  t h e  s u r f a c e  condi t ions .  
t h a t  Thomson followed t o  o b t a i n  t h e  s o l u t i o n  of t h e  problem of  t h e  e las t ic  
sphere.  The r e sea rch  i n t o  those  p a r t i c u l a r  s o l u t i o n s  which are  needed f o r  
a p p l i c a t i o n  of t h e  Be t t i -Cer ru t i  method a l s o  bea r  traces of t h e s e  ideas .  Even 
t h e  ou t s t and ing  s o l u t i o n s  i n  terms of d e f i n i t e  i n t e g r a l s  of problems of t h e  
sphere** andof  t h e  half-space g iven  by Professor  Almansi have b a s i c a l l y  t h i s  
o r i g i n .  Most e x p l i c i t  of a l l  i n  following t h i s  procedure,  however, seems t o  

* Of cour se ,  i n  t h i s  passage t o  t h e  l i m i t  i t  i s  assumed t h a t  t h e  i n t e g r a l s  
J: do, . . . a l s o  remain f i n i t e  i n  t h e  l i m i t .  
o 
** I am happy t o  c i te  t h e  work by Professor  Somigliana, "On t h e  Equi l ibr ium of 
an  Elastic Body" (Annali  d e l l a  Reale Scuola Normale Supe r io r i  d i  P i s a ,  1887) 
which g i v e s  many c a l c u l a t i o n s  reminiscent  of those  of Almansi's, b u t  of which 
P r o f e s s o r  Almansi i t  i s  c e r t a i n  had no knowledge. 

This  i s  p a r t i c u l a r l y  

T h i s  is  the method 
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m e  t o  be Professor  Cesaro who, i n  h i s  In t roduc t ion  t o  t h e  Mathematical Theory 
of E l a s t i c i t y  ( In t roduzione  a l l a  t e o r i a  matematica d e l l ' E l a s t i c i t a ) ,  a f t e r  . 
having given t h e  s o l u t i o n  of t h e  half-space by t h e  Be t t i -Cer ru t i  method, g ives  
another  which is  very  similar t o  t h e  one g iven  i n  t h i s  work and on page 120 
says  : 

"Professor Cerruti has treated the preceding probZem ' t o  give a fair29 
easy i l l u s t ra t ion  of the genera2 method' proposed by Bet t i .  
have t h i s  purpose i n  mind, but wishes mereZy t o  arrive at the solution of the 
probZem of eZastic s o i t ,  it i s  very easy by a more rapid and direct  procedure 
t o  arrive a t  the genera2 f o m Z a s  obtained by Professor Cermt i  and t o  do so 
without giving up 'conduct of the soZution i n  a manner which can provide some 
Zight f o r  treating simiZar problems.'* I t  su f f ices  i n  fac t  t o  take a Zook a t  
how he notes voZume diZation 8 ,  then t o  caZcuZate the dispZacements (u, V ,  w ) ,  I180 
and to deduce from t h e m  the expression for  8 :  
a rezationship tha t  serves t o  determine it." 

When one does not 

1 

t h i s  function i s  isoZated i n  

I hope, however, t h a t  i t  w i l l  be  recognized t h a t  w i th  t h e  i n t r o d u c t i o n  
of formulas (5) and (5') conta in ing  t h e  Green func t ions  G and G and w i t h  t h e  1' 
o t h e r  obse rva t ions  made i n  Sec t ion  I ,  these  i d e a s  come t o  acqu i r e  a g e n e r a l i t y  
and a power which they d i d  no t  have before .  

t Sc ien t i f i c  Translation Service 
4849 Tocaloma Lane- 
La Canada, California ' 
NASU-I496 

I 

* 
L i n c e i ,  1882,  p. 81. 

The words i n  s i n g l e  quotes  are those  of P ro fes so r  C e r r u t i ,  Accademia d e i  
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